Package index
-
any_constant()
- Check for constant columns
-
auc_pairs()
- Area under the Curve by pairwise concordance
-
available_supervised()
available_clustering()
available_decomposition()
- Available Algorithms
-
available_draw()
- Available Draw Functions
-
available_themes()
- Print available rtemis themes
-
binmat2vec()
- Binary matrix times character vector
-
calibrate.Classification()
- Calibrate Binary Classification Models
-
calibrate.ClassificationCV
- Calibrate Cross-validated Binary Classification Models
-
catrange()
- Print range of continuous variable
-
catsize()
- Print Size
-
check_data()
- Check Data
-
class_imbalance()
- Class Imbalance
-
classification_metrics()
- Classification Metrics
-
clean_colnames()
- Clean column names
-
clean_names()
- Clean names
-
cluster()
- Perform Clustering
-
col2grayscale()
- Color to Grayscale
-
col2hex()
- Convert R color to hexadecimal code
-
colMax()
- Collapse data.frame to vector by getting column max
-
color_adjust()
- Adjust HSV Color
-
color_fade()
- Fade color towards target
-
color_invertRGB()
- Invert Color in RGB space
-
color_mean()
- Average colors
-
color_mix()
- Create an alternating sequence of graded colors
-
color_op()
- Simple Color Operations
-
color_separate()
- Separate colors
-
colorgrad()
- Color Gradient
-
colorgrad_x()
- Color gradient for continuous variable
-
colorgradient.x()
- Color gradient for continuous variable
-
crules()
- Combine rules
-
ddSci()
- Format Numbers for Printing
-
ddb_collect()
- Collect a lazy-read duckdb table
-
ddb_data()
- Read CSV using DuckDB
-
decomp()
- Perform Data Decomposition
-
desaturate()
- Pastelify a color (make a color more pastel)
-
describe()
- Describe rtemis object
-
df_movecolumn()
- Move data frame column
-
drange()
- Set Dynamic Range
-
draw_3Dscatter()
- Interactive 3D Scatter Plots
-
draw_bar()
- Interactive Barplots
-
draw_box()
- Interactive Boxplots & Violin plots
-
draw_calibration()
- Draw calibration plot
-
draw_confusion()
- Plot confusion matrix
-
draw_dist()
- Draw Distributions using Histograms and Density Plots
-
draw_fit()
- True vs. Predicted Plot
-
draw_graphD3()
- Plot graph using networkD3
-
draw_graphjs()
- Plot network using threejs::graphjs
-
draw_heat()
- Heatmap with
plotly
-
draw_heatmap()
- Interactive Heatmaps
-
draw_leaflet()
- Plot interactive choropleth map using leaflet
-
draw_pie()
- Interactive Pie Chart
-
draw_protein()
- Plot an amino acid sequence with annotations
-
draw_pvals()
- Barplot p-values using draw_bar
-
draw_roc()
- Draw ROC curve
-
draw_scatter()
- Interactive Scatter Plots
-
draw_spectrogram()
- Interactive Spectrogram
-
draw_table()
- Simple HTML table
-
draw_ts()
- Interactive Timeseries Plots
-
draw_varimp()
- Interactive Variable Importance Plot
-
draw_volcano()
- Volcano Plot
-
draw_xt()
- Plot timeseries data
-
dt_check_unique()
- Check if all rows in a column are unique
-
dt_describe()
- Describe data.table
-
dt_get_column_attr()
- Tabulate column attributes
-
dt_get_duplicates()
- Get index of duplicate values
-
dt_index_attr()
- Index columns by attribute name & value
-
dt_inspect_type()
- Inspect column types
-
dt_keybin_reshape()
- Long to wide key-value reshaping
-
dt_merge()
- Merge data.tables
-
dt_names_by_attr()
- List column names by attribute
-
dt_names_by_class()
- List column names by class
-
dt_nunique_perfeat()
- Number of unique values per feature
-
dt_pctmatch()
- Get N and percent match of values between two columns of two data.tables
-
dt_pctmissing()
- Get percent of missing values from every column
-
dt_set_autotypes()
- Set column types automatically
-
dt_set_clean_all()
- Clean column names and factor levels in-place
-
dt_set_cleanfactorlevels()
- Clean factor levels of data.table in-place
-
dt_set_logical2factor()
- Convert data.table logical columns to factor with custom labels in-place
-
dt_set_one_hot()
- Convert data.table's factor to one-hot encoding in-place
-
explain()
- Explain Supervised
-
factor_NA2missing()
- Factor NA to "missing" level
-
factorize()
- Factor Analysis
-
fct_describe()
- Describe factor
-
features()
- Get features (all columns except the last one)
-
format_LightRuleFit_rules()
- Format LightRuleFit rules
-
format_rules()
- Calculate variable statistics from rules
-
fwhm2sigma()
- FWHM to Sigma
-
getfactornames()
- Get factor/numeric/logical/character names from data.frame/data.table
-
get_factor_levels()
- Get factor levels from data.frame or similar
-
get_loaded_pkg_version()
- Get version of all loaded packages (namespaces)
-
get_mode()
- Get the mode of a factor or integer
-
get_vars_from_rules()
- Extract variable names from rules
-
getnames()
getnumericnames()
getlogicalnames()
getcharacternames()
getdatenames()
- Get names by string matching
-
getnamesandtypes()
- Get data.frame names and types
-
ggtheme_dark()
- rtemis
ggplot2
dark theme
-
ggtheme_light()
- rtemis
ggplot2
light theme
-
gmean()
- Geometric mean
-
`%BC%`
- Binary matrix times character vector
-
graph_node_metrics()
- Node-wise (i.e. vertex-wise) graph metrics
-
gt_table()
- Greater-than Table
-
init_project_dir()
- Initialize Project Directory
-
inspect_type()
- Inspect character and factor vector
-
invlogit()
- Inverse Logit
-
is_constant()
- Check if vector is constant
-
is_discrete()
- Check if variable is discrete (factor or integer)
-
labelify()
- Format text for label printing
-
list2csv()
- Write list elements to CSV files
-
logistic()
- Logistic function
-
logit()
- Logit transform
-
lotri2edgeList()
- Connectivity Matrix to Edge List
-
lsapply()
lsapply
-
make_key()
- Make key from data.table id - description columns
-
make_path()
- Expand, normalize, concatenate, clean path
-
matchcases()
- Match cases by covariates
-
mgetnames()
- Get names by string matching multiple patterns
-
multigplot()
- Multipanel ggplot2 plots
-
nCr()
- n Choose r
-
one_hot2factor()
- Convert one-hot encoded matrix to factor
-
outcome()
- Get last column as a vector
-
palettize()
- Palettize colors
-
permute()
- Create permutations
-
pfread()
- fread delimited file in parts
-
plot(<Classification>)
- Plot Classification
-
plot(<Regression>)
- Plot Regression
-
plot_roc()
- Plot ROC curve
-
plot_varimp()
- Plot Variable Importance
-
predict(<nullmod>)
- rtemis internal: predict for an object of class
nullmod
-
preprocess()
- Preprocess Data
-
present()
- Present rtemis object
-
previewcolor()
- Preview color
-
print(<Hyperparameters>)
- Print Hyperparameters
-
psd()
- Population Standard Deviation
-
qstat()
- SGE qstat
-
read()
- Read tabular data from a variety of formats
-
recycle()
- Recycle values of vector to match length of target
-
regression_metrics()
- Regression Metrics
-
relu()
- ReLU - Rectified Linear Unit
-
resample()
- Resample data
-
rnormmat()
- Random Normal Matrix
-
rowMax()
- Collapse data.frame to vector by getting row max
-
rsd()
- Coefficient of Variation (Relative standard deviation)
-
rt_reactable()
- View table using reactable
-
rtemis
rtemis-package
- rtemis: Machine Learning and Visualization
-
rtpalette()
- Color Palettes
-
rtversion()
- Get rtemis and OS version info
-
rule_dist()
- Rule distance
-
rules2medmod()
- Convert rules from cutoffs to median/mode and range
-
runifmat()
- Random Uniform Matrix
-
se_GLM()
- Get Standard Errors from GLM model
-
seql()
- Sequence generation with automatic cycling
-
set_outcome()
- Move outcome to last column
-
setdiffsym()
- Symmetric Set Difference
-
setup_CART()
- Setup CART Hyperparameters
-
setup_CMeans()
- Setup CMeansParameters
-
setup_GAM()
- Setup GAM Hyperparameters
-
setup_GLM()
- Setup GLM Hyperparameters
-
setup_GLMNET()
- Setup GLMNET Hyperparameters
-
setup_GridSearch()
- Setup Grid Search Parameters
-
setup_HardCL()
- Setup HardCLParameters
-
setup_ICA()
- setup_ICA
-
setup_Isotonic()
- Setup Isotonic Hyperparameters
-
setup_KMeans()
- Setup KMmeansParameters
-
setup_LightCART()
- Setup LightCART Hyperparameters
-
setup_LightGBM()
- Setup LightGBM Hyperparameters
-
setup_LightRF()
- Setup LightRF Hyperparameters
-
setup_LightRuleFit()
- Setup LightRuleFit Hyperparameters
-
setup_NeuralGas()
- Setup NeuralGasParameters
-
setup_PCA()
- Setup PCA parameters.
-
setup_Preprocessor()
- Setup
PreprocessorParameters
-
setup_RadialSVM()
- Setup RadialSVM Hyperparameters
-
setup_Resampler()
- Setup Resampler
-
setup_TabNet()
- Setup TabNet Hyperparameters
-
setup_UMAP()
- Setup UMAP parameters.
-
setup_tSNE()
- Setup tSNE parameters.
-
sge_submit()
- Submit expression to SGE grid
-
sigmoid()
- Sigmoid function
-
size()
- Size of matrix or vector
-
softmax()
- Softmax function
-
softplus()
- Softplus function
-
sparsernorm()
- Sparse rnorm
-
summarize()
- Summarize numeric variables
-
svd1()
rtemis-internals
Project Variables to First Eigenvector
-
synth_multimodal()
- Create "Multimodal" Synthetic Data
-
synth_reg_data()
- Synthesize Simple Regression Data
-
table1()
- Table 1
-
theme_black()
theme_blackgrid()
theme_blackigrid()
theme_darkgray()
theme_darkgraygrid()
theme_darkgrayigrid()
theme_white()
theme_whitegrid()
theme_whiteigrid()
theme_lightgraygrid()
theme_mediumgraygrid()
- Themes for
draw_*
functions
-
tohtml()
- Generate
CheckData
object description in HTML
-
train()
- Train Supervised Learning Models
-
uci_heart_failure
- UCI Heart Failure Data
-
uniprot_get()
- Get protein sequence from UniProt
-
uniquevalsperfeat()
- Unique values per feature
-
vec2df()
- Vector to data.frame
-
winsorize()
- Winsorize vector
-
xlsx2list()
- Read all sheets of an XLSX file into a list
-
xtdescribe()
- Describe longitudinal dataset
-
zip2longlat()
- Get Longitude and Lattitude for zip code(s)
-
zipdist()
- Get distance between pairs of zip codes