Package index
-
any_constant() - Check for constant columns
-
available_supervised()available_clustering()available_decomposition() - Available Algorithms
-
available_draw() - Available Draw Functions
-
available_themes() - Print available rtemis themes
-
binmat2vec() - Binary matrix times character vector
-
calibrate.Classification() - Calibrate Binary Classification Models
-
calibrate.ClassificationRes - Calibrate Cross-validated Binary Classification Models
-
catrange() - Print range of continuous variable
-
catsize() - Print Size
-
check_data() - Check Data
-
choose_theme() - Select an rtemis theme
-
class_imbalance() - Class Imbalance
-
classification_metrics() - Classification Metrics
-
clean_colnames() - Clean column names
-
clean_names() - Clean names
-
cluster() - Perform Clustering
-
col2grayscale() - Color to Grayscale
-
col2hex() - Convert R color to hexadecimal code
-
color_adjust() - Adjust HSV Color
-
color_fade() - Fade color towards target
-
color_invertRGB() - Invert Color in RGB space
-
color_mix() - Create an alternating sequence of graded colors
-
color_op() - Simple Color Operations
-
colorgrad() - Color Gradient
-
crules() - Combine rules
-
ddSci() - Format Numbers for Printing
-
ddb_collect() - Collect a lazy-read duckdb table
-
ddb_data() - Read CSV using DuckDB
-
decomp() - Perform Data Decomposition
-
desaturate() - Pastelify a color (make a color more pastel)
-
describe() - Describe rtemis object
-
df_movecolumn() - Move data frame column
-
drange() - Set Dynamic Range
-
draw_3Dscatter() - Interactive 3D Scatter Plots
-
draw_bar() - Interactive Barplots
-
draw_box() - Interactive Boxplots & Violin plots
-
draw_calibration() - Draw calibration plot
-
draw_confusion() - Plot confusion matrix
-
draw_dist() - Draw Distributions using Histograms and Density Plots
-
draw_fit() - True vs. Predicted Plot
-
draw_graphD3() - Plot graph using networkD3
-
draw_graphjs() - Plot network using threejs::graphjs
-
draw_heat() - Heatmap with
plotly
-
draw_heatmap() - Interactive Heatmaps
-
draw_leaflet() - Plot interactive choropleth map using leaflet
-
draw_pie() - Interactive Pie Chart
-
draw_protein() - Plot an amino acid sequence with annotations
-
draw_pvals() - Barplot p-values using draw_bar
-
draw_roc() - Draw ROC curve
-
draw_scatter() - Interactive Scatter Plots
-
draw_spectrogram() - Interactive Spectrogram
-
draw_table() - Simple HTML table
-
draw_ts() - Interactive Timeseries Plots
-
draw_varimp() - Interactive Variable Importance Plot
-
draw_volcano() - Volcano Plot
-
draw_xt() - Plot timeseries data
-
dt_describe() - Describe data.table
-
dt_get_column_attr() - Tabulate column attributes
-
dt_index_attr() - Index columns by attribute name & value
-
dt_inspect_type() - Inspect column types
-
dt_keybin_reshape() - Long to wide key-value reshaping
-
dt_merge() - Merge data.tables
-
dt_names_by_attr() - List column names by attribute
-
dt_names_by_class() - List column names by class
-
dt_nunique_perfeat() - Number of unique values per feature
-
dt_pctmatch() - Get N and percent match of values between two columns of two data.tables
-
dt_pctmissing() - Get percent of missing values from every column
-
dt_set_autotypes() - Set column types automatically
-
dt_set_clean_all() - Clean column names and factor levels in-place
-
dt_set_cleanfactorlevels() - Clean factor levels of data.table in-place
-
dt_set_logical2factor() - Convert data.table logical columns to factors
-
dt_set_one_hot() - Convert data.table's factor to one-hot encoding in-place
-
explain() - Explain Supervised
-
factor_NA2missing() - Factor NA to "missing" level
-
factorize() - Factor Analysis
-
fct_describe() - Describe factor
-
features() - Get features (all columns except the last one)
-
fwhm2sigma() - FWHM to Sigma
-
getfactornames() - Get factor/numeric/logical/character names from data.frame/data.table
-
get_factor_levels() - Get factor levels from data.frame or similar
-
get_loaded_pkg_version() - Get version of all loaded packages (namespaces)
-
get_mode() - Get the mode of a factor or integer
-
get_vars_from_rules() - Extract variable names from rules
-
getnames()getnumericnames()getlogicalnames()getcharacternames()getdatenames() - Get names by string matching
-
getnamesandtypes() - Get data.frame names and types
-
ggtheme_dark() - rtemis
ggplot2dark theme
-
ggtheme_light() - rtemis
ggplot2light theme
-
gmean() - Geometric mean
-
`%BC%` - Binary matrix times character vector
-
graph_node_metrics() - Node-wise (i.e. vertex-wise) graph metrics
-
gt_table() - Greater-than Table
-
init_project_dir() - Initialize Project Directory
-
inspect_type() - Inspect character and factor vector
-
is_constant() - Check if vector is constant
-
is_discrete() - Check if variable is discrete (factor or integer)
-
labelify() - Format text for label printing
-
list2csv() - Write list elements to CSV files
-
lotri2edgeList() - Connectivity Matrix to Edge List
-
make_path() - Expand, normalize, concatenate, clean path
-
matchcases() - Match cases by covariates
-
mgetnames() - Get names by string matching multiple patterns
-
multigplot() - Multipanel ggplot2 plots
-
nCr() - n Choose r
-
one_hot2factor() - Convert one-hot encoded matrix to factor
-
outcome() - Get last column as a vector
-
permute() - Create permutations
-
pfread() - Read delimited file in parts
-
plot(<Classification>) - Plot Classification
-
plot(<Regression>) - Plot Regression
-
plot(<Supervised>) - Plot Supervised
-
plot(<SupervisedRes>) - Plot SupervisedRes
-
plot_roc() - Plot ROC curve
-
plot_true_pred.Classification() - Plot True vs. Predicted for Classification
-
plot_true_pred.ClassificationRes() - Plot True vs. Predicted for ClassificationRes
-
plot_true_pred.Regression() - Plot True vs. Predicted for Regression
-
plot_true_pred.RegressionRes() - Plot True vs. Predicted for RegressionRes
-
plot_varimp() - Plot Variable Importance
-
predict(<nullmod>) - rtemis internal: predict for an object of class
nullmod
-
preprocess() - Preprocess Data
-
present() - Present rtemis object
-
present.list() - Present list of Supervised or SupervisedRes objects
-
previewcolor() - Preview color
-
psd() - Population Standard Deviation
-
qstat() - SGE qstat
-
read() - Read tabular data from a variety of formats
-
recycle() - Recycle values of vector to match length of target
-
regression_metrics() - Regression Metrics
-
resample() - Resample data
-
rnormmat() - Random Normal Matrix
-
rt_reactable() - View table using reactable
-
rtemisrtemis-package - rtemis: Machine Learning and Visualization
-
rtpalette() - Color Palettes
-
rule_dist() - Rule distance
-
rules2medmod() - Convert rules from cutoffs to median/mode and range
-
runifmat() - Random Uniform Matrix
-
set_outcome() - Move outcome to last column
-
setdiffsym() - Symmetric Set Difference
-
setup_CART() - Setup CART Hyperparameters
-
setup_CMeans() - Setup CMeansParameters
-
setup_GAM() - Setup GAM Hyperparameters
-
setup_GLM() - Setup GLM Hyperparameters
-
setup_GLMNET() - Setup GLMNET Hyperparameters
-
setup_GridSearch() - Setup Grid Search Parameters
-
setup_HardCL() - Setup HardCLParameters
-
setup_ICA() - setup_ICA
-
setup_Isotonic() - Setup Isotonic Hyperparameters
-
setup_KMeans() - Setup KMmeansParameters
-
setup_LightCART() - Setup LightCART Hyperparameters
-
setup_LightGBM() - Setup LightGBM Hyperparameters
-
setup_LightRF() - Setup LightRF Hyperparameters
-
setup_LightRuleFit() - Setup LightRuleFit Hyperparameters
-
setup_NMF() - Setup NMF parameters.
-
setup_NeuralGas() - Setup NeuralGasParameters
-
setup_PCA() - Setup PCA parameters.
-
setup_Preprocessor() - Setup
PreprocessorParameters
-
setup_RadialSVM() - Setup RadialSVM Hyperparameters
-
setup_Resampler() - Setup Resampler
-
setup_TabNet() - Setup TabNet Hyperparameters
-
setup_UMAP() - Setup UMAP parameters.
-
setup_tSNE() - Setup tSNE parameters.
-
sge_submit() - Submit expression to SGE grid
-
size() - Size of matrix or vector
-
sparsernorm() - Sparse rnorm
-
summarize() - Summarize numeric variables
-
synth_multimodal() - Create "Multimodal" Synthetic Data
-
synth_reg_data() - Synthesize Simple Regression Data
-
table1() - Table 1
-
theme_black()theme_blackgrid()theme_blackigrid()theme_darkgray()theme_darkgraygrid()theme_darkgrayigrid()theme_white()theme_whitegrid()theme_whiteigrid()theme_lightgraygrid()theme_mediumgraygrid() - Themes for
draw_*functions
-
train() - Train Supervised Learning Models
-
uci_heart_failure - UCI Heart Failure Data
-
uniprot_get() - Get protein sequence from UniProt
-
uniquevalsperfeat() - Unique values per feature
-
vec2df() - Vector to data.frame
-
winsorize() - Winsorize vector
-
xlsx2list() - Read all sheets of an XLSX file into a list
-
xtdescribe() - Describe longitudinal dataset
-
zip2longlat() - Get Longitude and Lattitude for zip code(s)
-
zipdist() - Get distance between pairs of zip codes