Skip to contents

Setup hyperparameters for LightRuleFit training.

Usage

setup_LightRuleFit(
  nrounds = 200L,
  num_leaves = 32L,
  max_depth = 4L,
  learning_rate = 0.1,
  subsample = 0.666,
  subsample_freq = 1L,
  lambda_l1 = 0,
  lambda_l2 = 0,
  objective = NULL,
  ifw_lightgbm = FALSE,
  alpha = 1,
  lambda = NULL,
  ifw_glmnet = FALSE,
  ifw = FALSE
)

Arguments

nrounds

(Tunable) Positive integer: Number of boosting rounds.

num_leaves

(Tunable) Positive integer: Maximum number of leaves in one tree.

max_depth

(Tunable) Integer: Maximum depth of trees.

learning_rate

(Tunable) Numeric: Learning rate.

subsample

(Tunable) Numeric: Fraction of data to use.

subsample_freq

(Tunable) Positive integer: Frequency of subsample.

lambda_l1

(Tunable) Numeric: L1 regularization.

lambda_l2

(Tunable) Numeric: L2 regularization.

objective

Character: Objective function.

ifw_lightgbm

(Tunable) Logical: If TRUE, use Inverse Frequency Weighting in the LightGBM step.

alpha

(Tunable) Numeric: Alpha for GLMNET.

lambda

Numeric: Lambda for GLMNET.

ifw_glmnet

(Tunable) Logical: If TRUE, use Inverse Frequency Weighting in the GLMNET step.

ifw

Logical: If TRUE, use Inverse Frequency Weighting in classification. This applies IFW to both LightGBM and GLMNET.

Value

LightRuleFitHyperparameters object.

Details

Get more information from lightgbm::lgb.train.

Author

EDG