Draw calibration plot
Usage
draw_calibration(
true_labels,
predicted_prob,
n_bins = 10L,
bin_method = c("quantile", "equidistant"),
binclasspos = 2L,
main = NULL,
subtitle = NULL,
xlab = "Mean predicted probability",
ylab = "Empirical risk",
show_marginal_x = TRUE,
marginal_x_y = -0.02,
marginal_col = NULL,
marginal_size = 10,
mode = "markers+lines",
show_brier = TRUE,
theme = rtemis_theme,
filename = NULL,
...
)
Arguments
- true_labels
Factor or list of factors with true class labels
- predicted_prob
Numeric vector or list of numeric vectors with predicted probabilities
- n_bins
Integer: Number of windows to split the data into
- bin_method
Character: "quantile" or "equidistant": Method to bin the estimated probabilities.
- binclasspos
Integer: Index of the positive class
- main
Character: Main title
- subtitle
Character: Subtitle, placed bottom right of plot
- xlab
Character: x-axis label
- ylab
Character: y-axis label
- show_marginal_x
Logical: Add marginal plot of distribution of estimated probabilities
- marginal_x_y
Numeric: y position of marginal plot
- marginal_col
Character: Color of marginal plot
- marginal_size
Numeric: Size of marginal plot
- mode
Character: "lines", "markers", "lines+markers": How to plot.
- show_brier
Logical: If TRUE, add Brier scores to trace names.
- theme
Character or list: Theme to use for plot
- filename
Character: Path to save output.
- ...
Additional arguments passed to draw_scatter
Examples
if (FALSE) { # \dontrun{
data(segment_logistic, package = "probably")
# Plot the calibration curve of the original predictions
draw_calibration(
true_labels = segment_logistic$Class,
predicted_prob = segment_logistic$.pred_poor,
n_bins = 10L,
binclasspos = 2L
)
# Plot the calibration curve of the calibrated predictions
draw_calibration(
true_labels = segment_logistic$Class,
predicted_prob = calibrate(
segment_logistic$Class,
segment_logistic$.pred_poor
)$fitted.values,
n_bins = 10L,
binclasspos = 2L
)
} # }