Skip to contents

Setup tSNE parameters.

Usage

setup_tSNE(
  k = 2L,
  initial_dims = 50L,
  perplexity = 30,
  theta = 0.5,
  check_duplicates = TRUE,
  pca = TRUE,
  partial_pca = FALSE,
  max_iter = 1000L,
  verbose = getOption("verbose", FALSE),
  is_distance = FALSE,
  Y_init = NULL,
  pca_center = TRUE,
  pca_scale = FALSE,
  normalize = TRUE,
  stop_lying_iter = ifelse(is.null(Y_init), 250L, 0L),
  mom_switch_iter = ifelse(is.null(Y_init), 250L, 0L),
  momentum = 0.5,
  final_momentum = 0.8,
  eta = 200,
  exaggeration_factor = 12,
  num_threads = 1L
)

Arguments

k

Integer: Number of components.

initial_dims

Integer: Initial dimensions.

perplexity

Integer: Perplexity.

theta

Float: Theta.

check_duplicates

Logical: If TRUE, check for duplicates.

pca

Logical: If TRUE, perform PCA.

partial_pca

Logical: If TRUE, perform partial PCA.

max_iter

Integer: Maximum number of iterations.

verbose

Logical: If TRUE, print messages.

is_distance

Logical: If TRUE, x is a distance matrix.

Y_init

Matrix: Initial Y matrix.

pca_center

Logical: If TRUE, center PCA.

pca_scale

Logical: If TRUE, scale PCA.

normalize

Logical: If TRUE, normalize.

stop_lying_iter

Integer: Stop lying iterations.

mom_switch_iter

Integer: Momentum switch iterations.

momentum

Float: Momentum.

final_momentum

Float: Final momentum.

eta

Float: Eta.

exaggeration_factor

Float: Exaggeration factor.

num_threads

Integer: Number of threads.

Value

tSNEParameters object.

Details

Get more information on the parameters by running ?Rtsne::Rtsne.

Author

EDG