Create a GridSearchParams
object that can be passed to train.
Usage
setup_GridSearch(
resampler_parameters = setup_Resampler(n_resamples = 5L, type = "KFold"),
search_type = "exhaustive",
randomize_p = NULL,
metrics_aggregate_fn = "mean",
metric = NULL,
maximize = NULL,
parallel_type = "future",
n_workers = rtemis_workers
)
Arguments
- resampler_parameters
ResamplerParameters
set by setup_Resampler.- search_type
Character: "exhaustive" or "randomized". Type of grid search to use. Exhaustive search will try all combinations of parameters. Randomized will try a random sample of size
randomize_p
*N of total combinations
- randomize_p
Float (0, 1): For
search_type == "randomized"
, randomly test this proportion of combinations.- metrics_aggregate_fn
Character: Name of function to use to aggregate error metrics.
- metric
Character: Metric to minimize or maximize.
- maximize
Logical: If TRUE, maximize
metric
, otherwise minimize it.- parallel_type
Character: Parallel backend to use.
- n_workers
Integer: Number of workers to use.