Skip to contents

Get the Area under the ROC curve to assess classifier performance using pairwise concordance

Usage

auc_pairs(estimated.score, true.labels, verbosity = 1L)

Arguments

estimated.score

Float, Vector: Probabilities or model scores (e.g. c(.32, .75, .63), etc)

true.labels

True labels of outcomes (e.g. c(0, 1, 1))

verbosity

Integer: Verbosity level.

Details

The first level of true.labels must be the positive class, and high numbers in estimated.score should correspond to the positive class.

Examples

if (FALSE) { # \dontrun{
true.labels <- factor(c("a", "a", "a", "b", "b", "b", "b"))
estimated.score <- c(0.7, 0.55, 0.45, 0.25, 0.6, 0.7, 0.2)
auc_pairs(estimated.score, true.labels, verbosity = 1L)
} # }